login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131015 Period 12: repeat 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4. 0
1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2, 1, 4, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also the decimal expansion of 1018994/9000009. [From R. J. Mathar, Feb 07 2009]

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n)=(1/132)*{38*(n mod 12)-6*[(n+1) mod 12]+5*[(n+2) mod 12]-6*[(n+3) mod 12]+27*[(n+4) mod 12]+5*[(n+5) mod 12]-28*[(n+6) mod 12]+16*[(n+7) mod 12]+5*[(n+8) mod 12]+16*[(n+9) mod 12]-17*[(n+10) mod 12]+5*[(n+11) mod 12]}, with n>=0 - Paolo P. Lava, Sep 28 2007

G.f.: (1+2x^2-x^3-x^5+4x^6)/((1-x)(1+x^2)(1-x^2+x^4)). a(n)=a(n-1)-a(n-6)+a(n-7). [From R. J. Mathar, Feb 07 2009]

MATHEMATICA

PadRight[{}, 120, {1, 1, 3, 2, 2, 1, 4, 4, 2, 3, 3, 4}] (* Harvey P. Dale, Jan 12 2016 *)

CROSSREFS

Sequence in context: A252731 A239066 A239067 * A342769 A130195 A071048

Adjacent sequences:  A131012 A131013 A131014 * A131016 A131017 A131018

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Sep 22 2007

EXTENSIONS

More periods from R. J. Mathar, Feb 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 03:05 EDT 2021. Contains 347673 sequences. (Running on oeis4.)