login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131014
Sum of all n-digit Stirling numbers of first kind.
0
4, 61, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880, 19802759040, 283465647360, 4339163001600, 70734282393600, 1223405590579200, 22376988058521600, 431565146817638400, 8752948036761600000, 186244810780170240000, 4148476779335454720000
OFFSET
1,1
EXAMPLE
Sum of all 1-digit Stirling numbers is 0 + 1 + 3 = 4.
Sum of all 2-digit Stirling numbers is 11 + 50 = 61.
Sum of all 3-digit Stirling numbers is 274.
MATHEMATICA
digNum[n_] := Length @ IntegerDigits[n]; stir[n_] := n! * HarmonicNumber[n]; digCount = 0; sum = 0; cumsum = {}; Do[s = stir[n]; If[digNum[s] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += s, {n, 1, 25}]; Differences[cumsum] (* Amiram Eldar, Nov 30 2019 *)
CROSSREFS
Cf. A000254.
Sequence in context: A071582 A158300 A129452 * A118005 A132064 A378553
KEYWORD
nonn,base,less
AUTHOR
Parthasarathy Nambi, Sep 24 2007
EXTENSIONS
More terms from Amiram Eldar, Nov 30 2019
STATUS
approved