%I #11 Mar 06 2018 03:04:55
%S 2,0,0,1,1,1,2,2,2,2,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,0,0,0,0,0,0,
%T 0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,1,1,
%U 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0
%N Symmetric matrix: f(i,j)=(i+j mod 3), by antidiagonals.
%C A block matrix over {0,1,2}. In the following guide to related matrices and permanents, Duvwxyz represents the matrix remaining after row 1 of the matrix Auvwxyz is deleted:
%C Matrix................Permanent of n-th submatrix
%C A204263=D204421.......A204265
%C A204267=D204263.......A204268
%C A204421=D204267.......A179079
%C A204423=D204425.......A204424
%C A204425=D204427.......A204426
%C A204427=D204423.......A204428
%C A204429=D204431.......A204430
%C A204431=D204433.......A204432
%C A204433=D204429.......A204434
%H G. C. Greubel, <a href="/A204263/b204263.txt">Table of n, a(n) for the first 100 antidiagonals, flattened</a>
%e Northwest corner:
%e 2 0 1 2 0 1
%e 0 1 2 0 1 2
%e 1 2 0 1 2 0
%e 2 0 1 2 0 1
%e 0 1 2 0 1 2
%e 1 2 0 1 2 0
%t f[i_, j_] := Mod[i + j, 3];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[8]] (* 8x8 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 14}, {i, 1, n}]] (* A204263 *)
%t Permanent[m_] :=
%t With[{a = Array[x, Length[m]]},
%t Coefficient[Times @@ (m.a), Times @@ a]];
%t Table[Permanent[m[n]], {n, 1, 22}] (* A204265 *)
%Y Cf. A204265.
%K nonn,tabl
%O 1,1
%A _Clark Kimberling_, Jan 15 2012