login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204262
Permanent of the n-th principal submatrix of A003983.
2
1, 1, 3, 19, 209, 3545, 85803, 2807723, 119377321, 6397099105, 421772316915, 33552418294339, 3168847554832961, 350514662908385321, 44885099167514403963, 6587836555407268741019, 1098597117953239632728089, 206564512095561068049417265, 43495029251774783469442768323
OFFSET
0,3
LINKS
Discussion at dxdy.ru, Permanent of a matrix, (in Russian) (2023).
Terence Tao, Remarkable recursions for the A204262, answer to question on MathOverflow (2023).
FORMULA
From Mikhail Kurkov, Aug 03 2023: (Start)
a(n) = f(n, n, 0) for n >= 0 where f(n, q, x) = g(n, q, x) + f(n, q-1, q) - g(n, q, q) for n >= 0, q > 0 with f(n, 0, x) = n!*x^n for n >= 0 and where g(n, q, x) = Integral (n-q)^2*f(n-1, q, x) dx for n > 0, q > 0 (formula due to user with the nickname Null on a scientific forum dxdy.ru).
a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = Sum_{j=0..q+1} binomial(q+1, j)*(j+1)*R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0.
Both results were proved by Terence Tao, see Links section. (End)
Conjecture: Limit_{n->oo} (a(n)/n!^2)^(1/n) = 2/Pi. - Vaclav Kotesovec, Aug 05 2023
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, ()-> min(args)))):
seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
MATHEMATICA
f[i_, j_] := Min[i, j];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A003983 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A204262 *)
PROG
(PARI) a(n)={my(S, z, v=vector(n)); for(i=0, n!-1, v=numtoperm(n, i); z=1; for(j=1, n, z*= n+1-max(j, v[j])); S+=z); return(S)} \\ R. J. Cano, Nov 14 2016
(PARI) upto(n)=my(v1, x='x); v1=vector(n+1, i, i--; i!*x^i); for(i=1, n, for(j=i, n, my(A=intformal((j-i)^2*v1[j])); v1[j+1] = A + subst(v1[j+1] - A, x, i))); v1 \\ Mikhail Kurkov, Aug 03 2023
CROSSREFS
Sequence in context: A079144 A345218 A049056 * A165356 A000275 A058165
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 14 2012
EXTENSIONS
a(0)=1 prepended and more terms added by Alois P. Heinz, Nov 14 2016
STATUS
approved