login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165356
Primes p such that p + (p^2 - 1)/8 is a perfect square.
0
3, 19, 211, 1249, 4513, 1445953, 30381331, 286292179, 2959257735801707821729
OFFSET
1,1
COMMENTS
The primes p = A000040(j) at j= 2, 8, 47, 204, 612, 110340 etc. generating the squares 2^2, 8^2, 76^2, 443^2 etc.
From the ansatz p + (p^2 - 1)/8 = s^2 we conclude p = -4 + sqrt(17 + 8*s^2), so all s are members of A077241.
EXAMPLE
For p=3, p + (p^2-1)/8 = 4 = 2^2. For p=19, p + (p^2-1)/8 = 64 = 8^2. For p=211, p + (p^2-1)/8 = 5776 = 76^2.
MAPLE
A077241 := proc(n) if n <= 3 then op(n+1, [1, 2, 8, 13]) ; else 6*procname(n-2)-procname(n-4) ; fi; end:
for n from 0 do s := A077241(n) ; p := sqrt(17+8*s^2)-4 ; if isprime(p) then printf("%d, \n", p) ; fi; od: # R. J. Mathar, Sep 21 2009
a := proc (n) if isprime(n) = true and type(sqrt(n+(1/8)*n^2-1/8), integer) = true then n else end if end proc; seq(a(n), n = 1 .. 10000000); # Emeric Deutsch, Sep 21 2009
MATHEMATICA
p = 2; lst = {}; While[p < 10^12, If[ IntegerQ@ Sqrt[p + (p^2 - 1)/8], AppendTo[lst, p]; Print@p]; p = NextPrime@p] (* Robert G. Wilson v, Sep 30 2009 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 16 2009
EXTENSIONS
6 more terms from R. J. Mathar, Sep 21 2009
STATUS
approved