OFFSET
1,3
COMMENTS
REFERENCES
C. Kimberling, "Ordering the set of all positive Fibonacci sequences," in Applications of Fibonacci Numbers, vol. 5, Proceedings of the Fifth" International Conference on Fibonacci Numbers and Their Applications, Kluwer, 1993, pages 405-416.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened).
Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance 5 (2017) Vol. 70, See p. 65.
N. J. A. Sloane, Classic Sequences.
FORMULA
Row n is obtained from row n of the Wythoff array (A035513) by applying the reverse Fibonacci recurrence until reaching a pair (a,b) having a>b>=0.
EXAMPLE
Northwest corner:
1 0 1 1 2 3
2 1 3 4 7 11
2 0 2 2 4 6
3 0 3 3 6 9
4 0 4 4 8 12
3 1 4 5 9 14
Row 6 of the Wythoff array is (14,23,37,60,...). Reverse recurrence gives
9=23-14, 5=14-9, 4=9-5, 1=5-4, 3=4-1, so that row 6 of A165357 is
(3,1,4,5,9,14,23,37,60,...).
MATHEMATICA
w[n_, k_] := Fibonacci[k + 1] Floor[n GoldenRatio] + (n - 1) Fibonacci[k]; a[n_, k_] := w[n, Module[{z = 0}, ((While[w[#1, z] <= w[#1, z + 1], z--]; z - 1) &)[n] + k]]; Flatten[Table[a[n, k - n + 1], {k, 15}, {n, k}]] (* Peter J. C. Moses, Apr 11 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 16 2009
STATUS
approved