login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165354
Primes p such that p+(p^2-1)/8 is an integer but not a prime number.
4
3, 5, 11, 13, 19, 29, 37, 43, 47, 53, 59, 61, 67, 83, 89, 97, 101, 107, 109, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 263, 269, 271, 277, 283, 293, 307, 313, 317, 331, 347, 349, 353, 359, 373, 379, 389
OFFSET
1,1
COMMENTS
For p=2, p+(p^2-1)/8 is not integer; for all others, p=4k+-1, it is an integer.
LINKS
FORMULA
A000040 \ {{2} U A165353}. - R. J. Mathar, Sep 21 2009
MATHEMATICA
Select[Prime[Range[2, 500]], ! PrimeQ[(#^2 - 1) / 8 + #]&] (* Vincenzo Librandi, Sep 12 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(500)| not IsPrime(Floor(p+(p^2-1)/8))]; // Vincenzo Librandi, Sep 12 2013
CROSSREFS
Sequence in context: A059639 A059263 A066652 * A059638 A059265 A059314
KEYWORD
nonn,easy,changed
AUTHOR
Vincenzo Librandi, Sep 16 2009
EXTENSIONS
Entries checked by R. J. Mathar, Sep 21 2009
STATUS
approved