The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079144 Number of labeled interval orders on n elements: (2+2)-free posets. 14
 1, 1, 3, 19, 207, 3451, 81663, 2602699, 107477247, 5581680571, 356046745023, 27365431508779, 2494237642655487, 266005087863259291, 32815976815540917183, 4636895313201764853259, 743988605732990946684927 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Peter Bala, Dec 26 2021: (Start) We make the following conjectures: 1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 8 begins [1, 1, 3, 3, 7, 3, 7, 3, 7, ...] and appears to have a pre-period of length 3 and a period of length 2 = (1/2)*phi(8). 2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..260 Peter Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx) Graham Brightwell and Mitchel T. Keller, Asymptotic Enumeration of Labelled Interval Orders, arXiv:1111.6766 [math.CO], 2011. Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312 [math.CO], 2010-2011. Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019. Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, vol.40, pp.945-960 (2001); see p. 952. Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015. FORMULA a(n) = (1/(24^n))*Sum_{k=0..n} binomial(n, k)*A002439(k). Zagier 2001, p. 954. G.f.: Sum(Product(1-exp(-k*x),k = 1 .. n),n = 0 .. infinity). a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A138265(k). - Vladeta Jovovic, Mar 11 2008 From Peter Bala, Mar 19 2009: (Start) Conjectural form for the o.g.f. as a continued fraction: 1/(1-x/(1-2*x/(1-5*x/(1-7*x/(1-12*x/(1-15*x/(1- ...))))))) = 1 + x + 3*x^2 + 19*x^3 + 207*x^4 + ..., where the sequence [1,2,5,7,12,15,..] is the sequence of generalized pentagonal numbers A001318. Compare with the continued fraction form of the o.g.f. of A002105. (End) E.g.f.: 1+(exp(x)-1)/(G(0)+1-exp(x)), where G(k)= 2*exp(x*(k+1))-1-exp(x*(k+1))*(exp(x*(k+2))-1)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 06 2012 Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/Pi^(5/2) * (n!)^2 * sqrt(n) * (6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014 From Peter Bala, May 11 2017: (Start) For a proof of above conjectural continued fraction representation of the o.g.f. see the Bala link. G.f.: 1/(1 + x - 2*x/(1 - 1*x/(1 + x - 7*x/(1 - 5*x/(1 + x - 15*x/(1 - 12*x/(1 + x - 26*x/(1 - 22*x/(1 + x - ...))))))))), where the sequence of unsigned partial numerators [2, 1, 7, 5, 15, 12, ...] is obtained from A001318 by swapping adjacent terms. E.g.f.: F(q) = Sum_{n >= 0} q^(n+1)*Product_{i = 1..n} (1 - q^i)^2 at q = exp(t). Note that F(q) at q = 1/(1 - t) is a g.f. for unlabeled interval orders A022493, and at q = 1 - t gives a g.f. for A138265. (End) From Peter Bala, Dec 26 2021: (Start) a(6*n + 5) == 0 (mod 7); a(10*n + 7) == 0 (mod 11); a(12*n + 11) == 0 (mod 13); a(16*n + 5) == a(16*n + 8) == 0 (mod 17); a(18*n + 3) == 0 (mod 19); a(22*n + 4) == 0 (mod 23). (End) EXAMPLE 1 + x + 3*x^2 + 19*x^3 + 207*x^4 + 3451*x^5 + 81663*x^6 + 2602699*x^7 + ... MAPLE A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1, 2*k)*procname(n-k), k=1..n+1) ; end if; end proc: seq(1/(24^n)*add(binomial(n, k)*A002439(k), k = 0..n), n = 0..20); # Peter Bala, Dec 26 2021 MATHEMATICA nmax=20; rk=Rest[CoefficientList[Series[Sum[Product[1-1/(1+x)^j, {j, 1, n}], {n, 0, nmax}], {x, 0, nmax}], x]]; Flatten[{1, Table[Sum[rk[[k]] * k! * StirlingS2[n, k], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, May 03 2014 *) PROG (PARI) {a(n) = if( n<0, 0, n! * polcoeff( subst( sum( i=0, n, prod( j=1, i, 1 - (1 - x + O(x^(n - i + 2)))^j )), x, 1 - exp( -x + x * O(x^n))), n))} /* Michael Somos, Apr 01 2012 */ CROSSREFS Cf. A022493 (unlabeled interval orders). Cf. A002439 (Glaisher's T numbers), A002114 (Glaisher's H numbers). Cf. A001318, A138265. Sequence in context: A052886 A180563 A294330 * A345218 A049056 A204262 Adjacent sequences: A079141 A079142 A079143 * A079145 A079146 A079147 KEYWORD nonn,easy AUTHOR Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 11:46 EST 2023. Contains 367678 sequences. (Running on oeis4.)