login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079144 Number of labeled interval orders on n elements: (2+2)-free posets. 13
1, 1, 3, 19, 207, 3451, 81663, 2602699, 107477247, 5581680571, 356046745023, 27365431508779, 2494237642655487, 266005087863259291, 32815976815540917183, 4636895313201764853259, 743988605732990946684927 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..260

P. Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)

Graham Brightwell and Mitchel T. Keller, Asymptotic Enumeration of Labelled Interval Orders, arXiv:1111.6766 [math.CO], 2011.

Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312 [math.CO], 2010-2011.

Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.

Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, vol.40, pp.945-960 (2001); see p. 952.

Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.

FORMULA

a(n) = (1/(24^n))*sum(binomial(n, k)*A002439(k), k=0..n). Zagier 2001, p. 954.

G.f.: Sum(Product(1-exp(-k*x),k = 1 .. n),n = 0 .. infinity). a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A138265(k). - Vladeta Jovovic, Mar 11 2008

From Peter Bala, Mar 19 2009: (Start)

Conjectural form for the o.g.f. as a continued fraction:

1/(1-x/(1-2*x/(1-5*x/(1-7*x/(1-12*x/(1-15*x/(1- ...))))))) = 1 + x + 3*x^2 + 19*x^3 + 207*x^4 + ..., where the sequence [1,2,5,7,12,15,..] is the sequence of generalized pentagonal numbers A001318. Compare with the continued fraction form of the o.g.f. of A002105. (End)

E.g.f.: 1+(exp(x)-1)/(G(0)+1-exp(x)), where G(k)= 2*exp(x*(k+1))-1-exp(x*(k+1))*(exp(x*(k+2))-1)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 06 2012

Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/Pi^(5/2) * (n!)^2 * sqrt(n) * (6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014

From Peter Bala, May 11 2017: (Start)

For a proof of above conjectural continued fraction representation of the o.g.f. see the Bala link.

G.f.: 1/(1 + x - 2*x/(1 - 1*x/(1 + x - 7*x/(1 - 5*x/(1 + x - 15*x/(1 - 12*x/(1 + x - 26*x/(1 - 22*x/(1 + x - ...))))))))), where the sequence of unsigned partial numerators [2, 1, 7, 5, 15, 12, ...] is obtained from A001318 by swapping adjacent terms.

E.g.f.: F(q) = Sum_{n >= 0} q^(n+1)*Product_{i = 1..n} (1 - q^i)^2 at q = exp(t). Note that F(q) at q = 1/(1 - t) is a g.f. for unlabeled interval orders A022493, and at q = 1 - t gives a g.f. for A138265. (End)

EXAMPLE

1 + x + 3*x^2 + 19*x^3 + 207*x^4 + 3451*x^5 + 81663*x^6 + 2602699*x^7 + ...

MATHEMATICA

nmax=20; rk=Rest[CoefficientList[Series[Sum[Product[1-1/(1+x)^j, {j, 1, n}], {n, 0, nmax}], {x, 0, nmax}], x]]; Flatten[{1, Table[Sum[rk[[k]] * k! * StirlingS2[n, k], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, May 03 2014 *)

PROG

(PARI) {a(n) = if( n<0, 0, n! * polcoeff( subst( sum( i=0, n, prod( j=1, i, 1 - (1 - x + O(x^(n - i + 2)))^j )), x, 1 - exp( -x + x * O(x^n))), n))} /* Michael Somos, Apr 01 2012 */

CROSSREFS

Cf. A022493 (unlabeled interval orders).

Cf. A002439 (Glaisher's T numbers), A002114 (Glaisher's H numbers).

Cf. A001318, A138265.

Sequence in context: A052886 A180563 A294330 * A049056 A204262 A165356

Adjacent sequences:  A079141 A079142 A079143 * A079145 A079146 A079147

KEYWORD

nonn,easy

AUTHOR

Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 01:23 EST 2020. Contains 338864 sequences. (Running on oeis4.)