login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permanent of the n-th principal submatrix of A003983.
2

%I #49 Oct 29 2024 12:08:00

%S 1,1,3,19,209,3545,85803,2807723,119377321,6397099105,421772316915,

%T 33552418294339,3168847554832961,350514662908385321,

%U 44885099167514403963,6587836555407268741019,1098597117953239632728089,206564512095561068049417265,43495029251774783469442768323

%N Permanent of the n-th principal submatrix of A003983.

%H Alois P. Heinz, <a href="/A204262/b204262.txt">Table of n, a(n) for n = 0..264</a>

%H Discussion at dxdy.ru, <a href="https://dxdy.ru/topic154879.html">Permanent of a matrix</a>, (in Russian) (2023).

%H Terence Tao, <a href="https://mathoverflow.net/a/450607/231922">Remarkable recursions for the A204262</a>, answer to question on MathOverflow (2023).

%F From _Mikhail Kurkov_, Aug 03 2023: (Start)

%F a(n) = f(n, n, 0) for n >= 0 where f(n, q, x) = g(n, q, x) + f(n, q-1, q) - g(n, q, q) for n >= 0, q > 0 with f(n, 0, x) = n!*x^n for n >= 0 and where g(n, q, x) = Integral (n-q)^2*f(n-1, q, x) dx for n > 0, q > 0 (formula due to user with the nickname Null on a scientific forum dxdy.ru).

%F a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = Sum_{j=0..q+1} binomial(q+1, j)*(j+1)*R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0.

%F Both results were proved by _Terence Tao_, see Links section. (End)

%F Conjecture: Limit_{n->oo} (a(n)/n!^2)^(1/n) = 2/Pi. - _Vaclav Kotesovec_, Aug 05 2023

%p with(LinearAlgebra):

%p a:= n-> `if`(n=0, 1, Permanent(Matrix(n, ()-> min(args)))):

%p seq(a(n), n=0..16); # _Alois P. Heinz_, Nov 14 2016

%t f[i_, j_] := Min[i, j];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8x8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 12}, {i, 1, n}]] (* A003983 *)

%t Permanent[m_] :=

%t With[{a = Array[x, Length[m]]},

%t Coefficient[Times @@ (m.a), Times @@ a]];

%t Table[Permanent[m[n]], {n, 1, 15}] (* A204262 *)

%o (PARI) a(n)={my(S,z,v=vector(n));for(i=0,n!-1,v=numtoperm(n,i);z=1;for(j=1,n,z*= n+1-max(j,v[j]));S+=z);return(S)} \\ _R. J. Cano_, Nov 14 2016

%o (PARI) upto(n)=my(v1, x='x); v1=vector(n+1, i, i--; i!*x^i); for(i=1, n, for(j=i, n, my(A=intformal((j-i)^2*v1[j])); v1[j+1] = A + subst(v1[j+1] - A, x, i))); v1 \\ _Mikhail Kurkov_, Aug 03 2023

%Y Cf. A003983, A204264.

%K nonn

%O 0,3

%A _Clark Kimberling_, Jan 14 2012

%E a(0)=1 prepended and more terms added by _Alois P. Heinz_, Nov 14 2016