OFFSET
1,1
COMMENTS
Sequence is infinite, see Fouvry & Iwaniec.
Its intersection with A028916 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Named after the French mathematician Étienne Fouvry (b. 1953) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 20 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica, Vol. 79, No. 3 (1997), pp. 249-287.
Lasse Grimmelt, Vinogradov's Theorem with Fouvry-Iwaniec Primes, arXiv:1809.10008 [math.NT], 2018.
Art of Problem Solving, Fermat's Two Squares Theorem.
MATHEMATICA
nn = 1000; Union[Reap[Do[n = k^2 + p^2; If[n <= nn && PrimeQ[n], Sow[n]], {k, Sqrt[nn]}, {p, Prime[Range[PrimePi[Sqrt[nn]]]]}]][[2, 1]]]
PROG
(PARI) is(n)=forprime(p=2, sqrtint(n), if(issquare(n-p^2), return(isprime(n)))); 0
(PARI) list(lim)=my(v=List(), N, t); forprime(p=2, sqrt(lim), N=p^2; for(n=1, sqrt(lim-N), if(ispseudoprime(t=N+n^2), listput(v, t)))); v=vecsort(Vec(v), , 8); v
(Haskell)
a185086 n = a185086_list !! (n-1)
a185086_list = filter (\p -> any ((== 1) . a010052) $
map (p -) $ takeWhile (<= p) a001248_list) a000040_list
-- Reinhard Zumkeller, Mar 17 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Charles R Greathouse IV, Feb 18 2011
STATUS
approved