login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185086
Fouvry-Iwaniec primes: Primes of the form k^2 + p^2 where p is a prime.
10
5, 13, 29, 41, 53, 61, 73, 89, 109, 113, 137, 149, 157, 173, 193, 229, 233, 269, 281, 293, 313, 317, 349, 353, 373, 389, 397, 409, 433, 449, 461, 509, 521, 557, 569, 593, 601, 613, 617, 653, 673, 701, 733, 761, 773, 797, 809, 853, 857, 877, 929, 937, 941, 953
OFFSET
1,1
COMMENTS
Sequence is infinite, see Fouvry & Iwaniec.
Its intersection with A028916 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Named after the French mathematician Étienne Fouvry (b. 1953) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 20 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica, Vol. 79, No. 3 (1997), pp. 249-287.
Lasse Grimmelt, Vinogradov's Theorem with Fouvry-Iwaniec Primes, arXiv:1809.10008 [math.NT], 2018.
Art of Problem Solving, Fermat's Two Squares Theorem.
MATHEMATICA
nn = 1000; Union[Reap[Do[n = k^2 + p^2; If[n <= nn && PrimeQ[n], Sow[n]], {k, Sqrt[nn]}, {p, Prime[Range[PrimePi[Sqrt[nn]]]]}]][[2, 1]]]
PROG
(PARI) is(n)=forprime(p=2, sqrtint(n), if(issquare(n-p^2), return(isprime(n)))); 0
(PARI) list(lim)=my(v=List(), N, t); forprime(p=2, sqrt(lim), N=p^2; for(n=1, sqrt(lim-N), if(ispseudoprime(t=N+n^2), listput(v, t)))); v=vecsort(Vec(v), , 8); v
(Haskell)
a185086 n = a185086_list !! (n-1)
a185086_list = filter (\p -> any ((== 1) . a010052) $
map (p -) $ takeWhile (<= p) a001248_list) a000040_list
-- Reinhard Zumkeller, Mar 17 2013
CROSSREFS
Subsequence of A002144 and hence of A002313.
The positive terms of A240130 form a subsequence.
Sequence in context: A078598 A155054 A158756 * A277701 A159351 A163251
KEYWORD
nonn,nice
AUTHOR
STATUS
approved