login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163251
Primes that are sum of (at least two) consecutive squares.
5
5, 13, 29, 41, 61, 113, 139, 149, 181, 199, 271, 313, 421, 509, 613, 677, 761, 811, 1013, 1201, 1279, 1301, 1459, 1741, 1861, 1877, 2113, 2381, 2521, 2539, 2791, 3121, 3331, 3613, 3677, 3919, 4231, 4513, 5101, 7159, 7321, 8011, 8429, 8581, 9661, 9749, 9859
OFFSET
1,1
COMMENTS
Let S(n,k) = (n+1)^2 + (n+2)^2 +... + (n+k)^2, n>=0, k>=2. S(n,k) is always composite for k=4 (2 | S), k=5 (5 | S), and k >= 7 (see A256503). So a(n) is the sum of 2, 3, or 6 consecutive squares. The smallest a(n) that cannot be written as a sum of fewer than 6 consecutive squares is a(7)=139. - Vladimir Shevelev, Apr 08 2015
LINKS
EXAMPLE
5 = 1^2 + 2^2.
13 = 2^2 + 3^2.
29 = 2^2 + 3^2 + 4^2.
MATHEMATICA
lst = {}; Do[p = m^2; Do[p += n^2; If[PrimeQ[p] && p <= 101701, AppendTo[lst, p]], {n, m + 1, 6!, 1}], {m, 6!}]; Take[Union@lst, 5! (* Vladimir Joseph Stephan Orlovsky, Sep 15 2009 *)
Select[Union[Flatten[Table[Total/@Partition[Range[100]^2, n, 1], {n, 2, 10}]]], PrimeQ] (* Harvey P. Dale, Mar 12 2015 *)
CROSSREFS
A027862 is a subsequence.
Subsequence of A174069.
Sequence in context: A185086 A277701 A159351 * A247177 A146286 A065374
KEYWORD
nonn
AUTHOR
Gaurav Kumar, Jul 23 2009
EXTENSIONS
Offset corrected by Donovan Johnson, Nov 05 2012
STATUS
approved