The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247177 Primes p with property that the sum of the squares of the successive gaps between primes <= p is a prime number. 4
 5, 13, 29, 41, 89, 97, 139, 173, 179, 263, 269, 281, 307, 337, 353, 431, 439, 461, 487, 499, 509, 569, 607, 613, 641, 643, 661, 709, 739, 761, 809, 823, 839, 857, 919, 941, 967, 991, 1031, 1039, 1061, 1117, 1129, 1163, 1171, 1201, 1229, 1277, 1381, 1399 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If A074741(n) is prime, then prime(n+1) is in this sequence. - Michel Marcus, Jan 12 2015 LINKS Abhiram R Devesh, Table of n, a(n) for n = 1..1000 EXAMPLE a(1)=5; primes less than or equal to 5: [2, 3, 5]; squares of prime gaps: [1, 4]; sum of squares of prime gaps: 5. a(2)=13; primes less than or equal to 13: [2, 3, 5, 7, 11, 13]; squares of prime gaps: [1, 4, 4, 16, 4]; sum of squares of prime gaps: 29. PROG (Python) import sympy p=2 s=0 while p>0: ....np=sympy.nextprime(p) ....if sympy.isprime(s)==True: ........print(p) ....d=np-p ....s=s+(d*d) ....p=np (PARI) listp(nn) = {my(s = 0); my(precp = 2); forprime (p=3, nn, if (isprime(ns = (s + (p - precp)^2)), print1(p, ", ")); s = ns; precp = p; ); } \\ Michel Marcus, Jan 12 2015 CROSSREFS Cf. A074741 (sum of squares of gaps between consecutive primes). Sequence in context: A277701 A159351 A163251 * A146286 A065374 A130066 Adjacent sequences:  A247174 A247175 A247176 * A247178 A247179 A247180 KEYWORD nonn,easy AUTHOR Abhiram R Devesh, Nov 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 17:19 EST 2020. Contains 332293 sequences. (Running on oeis4.)