login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247174
Numbers k such that phi(k) = phi(k+1) and simultaneously Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010).
1
1, 3, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
OFFSET
1,2
COMMENTS
Numbers n such that A000010(n) = A000010(n+1) and simultaneously A029940(n) = A029940(n+1).
4294967295 is also a term of this sequence.
Intersection of A001274 and A248795.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..213 (terms below 10^13, calculated using the b-file at A001274)
EXAMPLE
15 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|(15+1)} phi(d) = 64.
MATHEMATICA
a247174[n_Integer] := Module[{a001274, a248795},
a001274[m_] := Select[Range[m], EulerPhi[#] == EulerPhi[# + 1] &];
a248795[m_] :=
Select[Range[m],
Product[EulerPhi[i], {i, Divisors[#]}] ==
Product[EulerPhi[j], {j, Divisors[# + 1]}] &];
Intersection[a001274[n], a248795[n]]] (* Michael De Vlieger, Dec 01 2014 *)
PROG
(Magma) [n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)]) and EulerPhi(n) eq EulerPhi(n+1)]
(Magma) [n: n in [A248795(n)] | EulerPhi(n) eq EulerPhi(n+1)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 22 2014
EXTENSIONS
a(6)-a(19) using A248795 by Jaroslav Krizek, Nov 25 2014
STATUS
approved