login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247171
G.f.: (2*x^2+4*x+3)/((2*x+2)*sqrt(-4*x^3-4*x^2+1))-1/(2*x+2).
0
1, 1, 3, 4, 11, 21, 48, 106, 235, 535, 1203, 2751, 6272, 14392, 33078, 76224, 176043, 407253, 943833, 2190397, 5090371, 11843689, 27586793, 64320191, 150102784, 350586496, 819477792, 1916861350, 4486760870, 10508582130, 24626700888
OFFSET
0,3
FORMULA
a(n) = n*Sum_{k=1..n} (binomial(2*k,n-k)*binomial(n-k-1,k-1))/k, n>0, a(0)=1.
D-finite with recurrence: 3*n*a(n) +(7*n-8)*a(n-1) +2*(-3*n-2)*a(n-2) +2*(-19*n+35)*a(n-3) +2*(-26*n+81)*a(n-4) +4*(-8*n+35)*a(n-5) +4*(-2*n+11)*a(n-6)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[(2 x^2 + 4 x + 3) / ((2 x + 2) Sqrt[-4 x^3 - 4 x^2 + 1]) - 1 / (2 x + 2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else n*sum((binomial(2*k, n-k)*binomial(n-k-1, k-1))/k, k, 1, n);
CROSSREFS
Cf. A007477.
Sequence in context: A152982 A001642 A001643 * A005218 A219514 A131481
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 22 2014
STATUS
approved