login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247169
G.f. (4*x+3)/(2*(x+1))*(1+1/sqrt(-4*x^4-4*x^3+1)).
1
3, 1, -1, 4, 3, 1, 8, 22, 11, 31, 99, 111, 144, 456, 734, 904, 2155, 4285, 5921, 11173, 23603, 37489, 63161, 129031, 227072, 375376, 719432, 1335478, 2264118, 4126266, 7759608, 13613744, 24219051, 45127317, 81256395, 144053547, 264457881
OFFSET
0,1
FORMULA
a(n) = n*sum_{m=0..(n-1)/2} binomial(n-2*m,m)*binomial(2*m-1,n-2*m-1)/(n-2*m), n>0, a(0)=3.
G.f.: A(x)=x*B'(x)/B(x), where B(x) is g.f. of A025277.
D-finite with recurrence: 3*n*a(n) +(7*n-8)*a(n-1) +4*(n-2)*a(n-2) +6*(-2*n+3)*a(n-3) +2*(-20*n+49)*a(n-4) +4*(-11*n+36)*a(n-5) +16*(-n+4)*a(n-6)=0. - R. J. Mathar, Nov 25 2014, corrected Feb 16 2020
MAPLE
A247169 := proc(n)
if n = 0 then
3;
else
add( binomial(n-2*m, m)*binomial(2*m-1, n-2*m-1)/(n-2*m), m=0..floor((n-1)/2)) ;
n*% ;
end if;
end proc:
seq(A247169(n), n=0..50) ;
PROG
(Maxima)
a(n):=if n=0 then 3 else (n*sum((binomial(n-2*m, m)*binomial(2*m-1, n-2*m-1))/(n-2*m), m, 0, (n-1)/2));
CROSSREFS
Sequence in context: A363901 A049999 A126015 * A144336 A036040 A080575
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 21 2014
STATUS
approved