login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247170
Expansion of (-3/2+(x^3+3*x)/(sqrt(x^4-4*x^3-2*x^2+1)*2*x)).
1
0, 2, 3, 2, 10, 11, 21, 50, 66, 152, 275, 467, 988, 1717, 3283, 6386, 11560, 22556, 42465, 79832, 154122, 290039, 554323, 1060259, 2012310, 3859286, 7365423, 14072333, 26980788, 51580271, 98873291, 189567090, 363277676, 697348910
OFFSET
1,2
LINKS
FORMULA
a(n) = n*Sum_{k=1..n} binomial(k,n-2*k)*binomial(n-k-1,k-1)/k.
From R. J. Mathar, Jan 25 2020: (Start)
D-finite with recurrence: +3*n*a(n) +3*(n-1)*a(n-1) +(-5*n+2)*a(n-2) +(-17*n+25)*a(n-3) +(-11*n+34)*a(n-4) +(-3*n+25)*a(n-5) +(-3*n+20)*a(n-6) +(n-7)*a(n-7) = 0.
Conjectured: +n*(2*n-7)*a(n) +(n-1)*(2*n-9)*a(n-1) +2*(-2*n^2+9*n-6)*a(n-2) +2*(-6*n^2+33*n-38)*a(n-3) +3*(-2*n^2+15*n-26)*a(n-4) +(2*n-5)*(n-5)*a(n-5) = 0.
(End)
MATHEMATICA
Table[n*Sum[(Binomial[k, n-2k]Binomial[n-k-1, k-1])/k, {k, n}], {n, 40}] (* Harvey P. Dale, Oct 04 2017 *)
PROG
(Maxima)
a(n):=n*sum((binomial(k, n-2*k)*binomial(n-k-1, k-1))/k, k, 1, n);
(Magma) R<x>:=PowerSeriesRing(Rationals(), 36); [0] cat Coefficients(R!( (-3/2+(x^3+3*x)/(Sqrt(x^4-4*x^3-2*x^2+1)*2*x)))); // Marius A. Burtea, Feb 11 2020
(Magma) [n*&+[Binomial(k, n-2*k)*Binomial(n-k-1, k-1)/k:k in [1..n]]:n in [1..35]]; // Marius A. Burtea, Feb 11 2020
CROSSREFS
Cf. A025250.
Sequence in context: A075076 A333129 A078828 * A241055 A224418 A220947
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 21 2014
STATUS
approved