login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025277
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5.
3
0, 0, 1, 1, 0, 1, 2, 1, 2, 6, 6, 7, 20, 30, 34, 75, 140, 182, 322, 644, 972, 1554, 3024, 5091, 8052, 14784, 26378, 43032, 75504, 136994, 232232, 399399, 720356, 1257256, 2161874, 3852576, 6831552, 11858418, 20949304, 37350768
OFFSET
1,7
FORMULA
G.f.: -(sqrt(1-4*x^4-4*x^3)-1)/2. - Vladimir Kruchinin, Nov 21 2014
a(n) = sum(m=0..(n-3)/2, (binomial(n-2*m-3,m)*binomial(2*m+1,n-2*m-3))/(2*m+1)). - Vladimir Kruchinin, Nov 21 2014
a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3). - Robert Israel, Nov 21 2014
MAPLE
A025277:= gfun:-rectoproc({a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3), a(1)=0, a(2)=0, a(3)=1, a(4)=1}, a(n), remember):
seq(A025277(n), n=1..100); # Robert Israel, Nov 21 2014
MATHEMATICA
nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 0; aa[[2]] = 0; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]], {k, 1, n-1}], {n, 5, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
a[n_] := Sum[Binomial[n-2*m-3, m]*Binomial[2*m+1, n-2*m-3]/(2*m+1), {m, 0, (n-3)/2}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum((binomial(n-2*m-3, m)*binomial(2*m+1, n-2*m-3))/(2*m+1), m, 0, (n-3)/2); /* Vladimir Kruchinin, Nov 21 2014 */
CROSSREFS
Sequence in context: A281781 A351317 A094965 * A248100 A153896 A074727
KEYWORD
nonn
STATUS
approved