login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281781
Expansion of Product_{k>=1} (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1).
5
1, 1, -1, 2, -1, -2, 6, -6, 3, -1, -1, 9, -18, 23, -27, 23, -1, -24, 49, -89, 121, -117, 96, -60, -18, 138, -275, 408, -525, 592, -566, 444, -181, -276, 854, -1485, 2154, -2765, 3157, -3131, 2571, -1468, -301, 2813, -5860, 9153, -12386, 15082, -16664, 16558, -14125
OFFSET
0,4
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, May 28 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(4*k)/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^k)^(4*k)*(1 - x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
PROG
(PARI) x='x+O('x^51); Vec(prod(k=1, 50, (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1))) \\ Indranil Ghosh, Apr 14 2017
CROSSREFS
Sequence in context: A336524 A219570 A285030 * A351317 A094965 A025277
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 14 2017
STATUS
approved