login
A219570
Triangular array read by rows. T(n,k) is the number of necklaces (turning over is not allowed) of n labeled black or white beads having exactly k black beads.
2
0, 1, 1, 1, 2, 1, 2, 6, 6, 2, 6, 24, 36, 24, 6, 24, 120, 240, 240, 120, 24, 120, 720, 1800, 2400, 1800, 720, 120, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 5040, 40320, 141120, 282240, 352800, 282240, 141120, 40320, 5040, 40320, 362880, 1451520, 3386880, 5080320, 5080320, 3386880, 1451520, 362880, 40320
OFFSET
0,5
COMMENTS
Row sums are A066318.
LINKS
FORMULA
E.g.f.: log(1/(1 - (y + 1)*x)).
T(n, k) = (n-1)! * binomial(n, k) for n > 0. - Andrew Howroyd, Oct 11 2017
EXAMPLE
0;
1, 1;
1, 2, 1;
2, 6, 6, 2;
6, 24, 36, 24, 6;
24, 120, 240, 240, 120, 24;
120, 720, 1800, 2400, 1800, 720, 120;
720, 5040, 15120, 25200, 25200, 15120, 5040, 720;
MATHEMATICA
nn=8; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[Log[1/(1-(y+1)x)], {x, 0, nn}], {x, y}], 1]]//Grid
PROG
(PARI) T(n, k) = if(n>0, (n-1)! * binomial(n, k)); \\ Andrew Howroyd, Oct 11 2017
CROSSREFS
Sequence in context: A301361 A267864 A336524 * A285030 A281781 A351317
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 23 2012
STATUS
approved