login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219572
Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 n X 2 array.
2
4, 13, 59, 181, 469, 1107, 2447, 5120, 10197, 19415, 35485, 62501, 106471, 175993, 283101, 444308, 681875, 1025337, 1513319, 2195677, 3136001, 4414519, 6131443, 8410800, 11404793, 15298739, 20316633, 26727389, 34851811, 45070349, 57831697
OFFSET
1,1
COMMENTS
Column 2 of A219578.
LINKS
FORMULA
Empirical: a(n) = (1/20160)*n^8 + (1/2520)*n^7 + (1/480)*n^6 + (43/360)*n^5 - (297/320)*n^4 + (1271/180)*n^3 - (75973/5040)*n^2 + (2081/105)*n - 12 for n>1.
Conjectures from Colin Barker, Mar 11 2018: (Start)
G.f.: x*(4 - 23*x + 86*x^2 - 218*x^3 + 376*x^4 - 420*x^5 + 296*x^6 - 127*x^7 + 33*x^8 - 5*x^9) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)
EXAMPLE
Some solutions for n=3:
..2..2....0..0....1..1....0..0....2..2....0..0....1..1....0..0....0..0....1..1
..2..1....2..0....2..1....0..0....2..2....1..0....1..1....1..0....2..0....1..0
..1..1....3..3....1..1....2..1....3..3....3..3....1..1....1..3....2..2....0..0
CROSSREFS
Cf. A219578.
Sequence in context: A149485 A006798 A158267 * A026663 A149486 A317891
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2012
STATUS
approved