login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158267
Inverse Euler transform of A156305.
1
1, 4, 13, 59, 151, 916, 1961, 12035, 35110, 166204, 384781, 3154367, 5600323, 34384676, 124093963, 582290595, 1235438587, 9831378712, 18602770421, 144738772109, 410101237013, 1721535323380, 4295702988313, 40309503022439
OFFSET
1,2
COMMENTS
G.f. of A156305: exp( Sum_{n>=1} sigma(n)*C(2*n-1,n)*x^n/n ), where C(2n-1,n) = A001700(n-1).
FORMULA
a(n) = (1/n)*Sum_{d|n} sigma(d)*C(2d-1,d)*moebius(n/d).
EXAMPLE
Let G(x) = g.f. of A156305:
G(x) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^4*(1-x^3)^13*(1-x^4)^59*(1-x^5)^151*...].
MATHEMATICA
Table[Sum[DivisorSigma[1, d]*Binomial[2*d - 1, d]*MoebiusMu[n/d], {d, Divisors[n]}] / n, {n, 1, 30}] (* Vaclav Kotesovec, Oct 09 2019 *)
PROG
(PARI) {a(n)=(1/n)*sumdiv(n, d, sigma(d)*binomial(2*d-1, d)*moebius(n/d))}
CROSSREFS
Sequence in context: A149484 A149485 A006798 * A219572 A026663 A149486
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 09 2009
STATUS
approved