login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156305
G.f.: A(x) = exp( Sum_{n>=1} sigma(n) * C(2*n-1,n) * x^n/n ), a power series in x with integer coefficients.
3
1, 1, 5, 18, 87, 290, 1553, 5015, 25436, 94500, 431464, 1519749, 8024004, 26746757, 125190249, 498138920, 2221127601, 8020960187, 38836436844, 138444409552, 655009491676, 2512996318026, 10775473291178, 40824090856703
OFFSET
0,3
COMMENTS
Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Catalan numbers: exp( Sum_{n>=1} C(2*n-1,n)*x^n/n ),
where sigma(n) = A000203(n) is the sum of the divisors of n.
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(k)*C(2*k-1,k)*a(n-k) for n>0, with a(0) = 1.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 + 5015*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*10*x^3/3 + 7*35*x^4/4 + 6*126*x^5/5 + 12*462*x^6/6 + ... + A000203(n)*A001700(n)*x^n/n + ...
MATHEMATICA
a[n_] := If[n==0, 1, (1/n) * Sum[DivisorSigma[1, k] * Binomial[2k - 1, k] a[n - k], {k, n}] ]; Table[a[n], {n, 0, 23}] (* Indranil Ghosh, Mar 12 2017 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)*binomial(2*k-1, k)*x^k/k)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)*binomial(2*k-1, k)*a(n-k)))}
CROSSREFS
Cf. A000203 (sigma), A000041 (partitions), A001700 (C(2*n-1, n)), A000108 (Catalan).
Sequence in context: A357797 A199257 A188206 * A369362 A213190 A151490
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved