login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156306
E.g.f.: A(x) = exp( Sum_{n>=1} sigma(n) * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.
0
1, 1, 4, 26, 292, 3468, 69664, 1208936, 32822456, 858979216, 28933584112, 836115182512, 40673697842208, 1381857061152896, 67261437417875776, 3297904559465926208, 192628214559932492928, 8815748379077085483264
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} sigma(k) * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.
EXAMPLE
E.g.f: A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 292*x^4/4! + 3468*x^5/5! +...
log(A(x)) = x + 3*1*x^2/2! + 4*4*x^3/3! + 7*26*x^4/4! + 6*292*x^5/5! + 12*3468*x^6/6! +...
PROG
(PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(k=1, n, sigma(k)*a(k-1)*x^k/k!)+x*O(x^n)), n))}
(PARI) {a(n)=if(n==0, 1, sum(k=1, n, sigma(k)*binomial(n-1, k-1)*a(k-1)*a(n-k)))}
CROSSREFS
Cf. A000203 (sigma).
Sequence in context: A177451 A304864 A167811 * A054592 A357795 A102202
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved