OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} sigma(k) * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.
EXAMPLE
E.g.f: A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 292*x^4/4! + 3468*x^5/5! +...
log(A(x)) = x + 3*1*x^2/2! + 4*4*x^3/3! + 7*26*x^4/4! + 6*292*x^5/5! + 12*3468*x^6/6! +...
PROG
(PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(k=1, n, sigma(k)*a(k-1)*x^k/k!)+x*O(x^n)), n))}
(PARI) {a(n)=if(n==0, 1, sum(k=1, n, sigma(k)*binomial(n-1, k-1)*a(k-1)*a(n-k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved