login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054592
Number of disconnected labeled graphs with n nodes.
15
0, 0, 1, 4, 26, 296, 6064, 230896, 16886864, 2423185664, 687883494016, 387139470010624, 432380088071584256, 959252253993204724736, 4231267540316814507357184, 37138269572860613284747227136, 649037449132671895468073434916864, 22596879313063804832510513481261154304
OFFSET
0,4
FORMULA
a(n) = 2^binomial(n, 2) - A001187(n).
a(n) = n!*[x^n](g - log(g) - 1) where g = Sum_{n>=0} 2^binomial(n, 2) * x^n / n!. - Geoffrey Critzer, Nov 11 2011
a(n) = Sum_{k=0..n-1} A360604(n, k) * A001187(k). - Peter Luschny, Feb 24 2023
MAPLE
upto := 18: g := add(2^binomial(n, 2) * x^n / n!, n = 0..upto+1):
ser := series(g - log(g) - 1, x, upto+1):
seq(n!*coeff(ser, x, n), n = 0..upto); # Peter Luschny, Feb 24 2023
MATHEMATICA
g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, 20}]; Range[0, 20]! CoefficientList[Series[g-Log[g]-1, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 11 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 15 2000
EXTENSIONS
Edited and extended with a(0) = 0 by Peter Luschny, Feb 24 2023
STATUS
approved