OFFSET
0,3
COMMENTS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} C(2k-1,k)^2 * a(n-k) for n>0, with a(0)=1.
A(x) = exp( Sum_{n >= 1} 1/4*C(2*n,n)^2*x^n/n ). A(x)^4 is the o.g.f. for A224734. - Peter Bala, Jun 04 2015
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 352*x^4 + 3659*x^5 + 41012*x^6 +...
log(A(x)) = x + 3^2*x^2/2 + 10^2*x^3/3 + 35^2*x^4/4 + 126^2*x^5/5 +...
log(C(x)) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 126*x^5/5 +...
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (g.f. of A000108).
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m-1, m)^2*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, binomial(2*k-1, k)^2*a(n-k)))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Apr 09 2009
STATUS
approved