login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158266 G.f.: A(x) = exp( Sum_{n>=1} C(2n-1,n)^2*x^n/n ). 1
1, 1, 5, 38, 352, 3659, 41012, 484739, 5959417, 75523708, 980470867, 12980840984, 174675568464, 2382923659387, 32890264803521, 458576476085929, 6450351908991558, 91437202854436755, 1305115286958337403 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to Catalan(x) = exp( Sum_{n>=1} C(2n-1,n)*x^n/n ), where C(2n-1,n) = A001700(n-1) and Catalan(x) is the g.f. of A000108(n) = C(2n,n)/(n+1).

LINKS

Table of n, a(n) for n=0..18.

FORMULA

a(n) = (1/n)*Sum_{k=1..n} C(2k-1,k)^2 * a(n-k) for n>0, with a(0)=1.

A(x) = exp( Sum_{n >= 1} 1/4*C(2*n,n)^2*x^n/n ). A(x)^4 is the o.g.f. for A224734. - Peter Bala, Jun 04 2015

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 352*x^4 + 3659*x^5 + 41012*x^6 +...

log(A(x)) = x + 3^2*x^2/2 + 10^2*x^3/3 + 35^2*x^4/4 + 126^2*x^5/5 +...

log(C(x)) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 126*x^5/5 +...

C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (g.f. of A000108).

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m-1, m)^2*x^m/m)+x*O(x^n)), n)}

(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, binomial(2*k-1, k)^2*a(n-k)))}

CROSSREFS

Cf. A001700, A000108, A224734.

Sequence in context: A316598 A228657 A113207 * A355380 A213639 A243690

Adjacent sequences:  A158263 A158264 A158265 * A158267 A158268 A158269

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Apr 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 23:43 EDT 2022. Contains 356951 sequences. (Running on oeis4.)