login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158264
Table where row n lists the coefficients in the (2^n)-th iteration of x+x^2 for n>=0, read by antidiagonals not including trailing zeros in rows.
4
1, 1, 1, 1, 2, 1, 4, 2, 1, 8, 12, 1, 1, 16, 56, 30, 1, 32, 240, 364, 64, 1, 64, 992, 3480, 2240, 118, 1, 128, 4032, 30256, 49280, 13188, 188, 1, 256, 16256, 252000, 912640, 685160, 74760, 258, 1, 512, 65280, 2056384, 15665664, 27297360, 9383248, 409836, 302, 1
OFFSET
0,5
FORMULA
G.f. of column k: P_k(x)/Product_{j=1,k} (1-2^j*x) where P_k(x) is a polynomial of degree k-1 for k>=1.
EXAMPLE
Table of coefficients in the (2^n)-th iteration of x+x^2 begins:
1,1,0,0,0,0,0,0,0,0,0,0,0,0,...;
1,2,2,1,0,0,0,0,0,0,0,0,0,0,...;
1,4,12,30,64,118,188,258,302,298,244,162,84,32,8,1,0,0,0,0,0,...;
1,8,56,364,2240,13188,74760,409836,2179556,11271436,56788112,...;
1,16,240,3480,49280,685160,9383248,126855288,1695695976,...;
1,32,992,30256,912640,27297360,810903456,23950328688,...;
1,64,4032,252000,15665664,969917088,59855127360,3683654668512,...;
1,128,16256,2056384,259445760,32668147008,4106848523904,...;
1,256,65280,16613760,4222658560,1072200161920,272033712041216,...;
1,512,261632,133563136,68139438080,34745409189120,17710292513905152,...;
...
The initial column g.f.s are as follows:
k=1: 1/(1-2x);
k=2: 2x/((1-2x)(1-4x));
k=3: (x+16x^2)/((1-2x)(1-4x)(1-8x));
k=4: (64x^2+320x^3)/((1-2x)(1-4x)(1-8x)(1-16x));
k=5: (118x^2+5872x^3+13824x^4)/((1-2x)(1-4x)(1-8x)(1-16x)(1-32x));
...
The coefficients in the numerators of column g.f.s forms a triangle:
1;
0,2;
0,1,16;
0,0,64,320;
0,0,118,5872,13824;
0,0,188,51072,942592,1179648;
0,0,258,344304,28261632,278323200,179306496;
0,0,302,2025536,610203136,25398255616,152690491392,37044092928; ...
in which the main diagonal starts:
[1,2,16,320,13824,1179648,179306496,37044092928,-9947144257536,...];
and the row sums of the triangle begin:
[1,2,17,384,19814,2173500,486235890,215745068910,186016597075722,...].
PROG
(PARI) {T(n, k)=local(G=x+x^2+x*O(x^k)); if(n<1, 0, for(i=1, n-1, G=subst(G, x, G)); polcoeff(G, k, x))}
CROSSREFS
Cf. diagonals: A158260, A158261, A158262, A158263.
Cf. related table: A122888.
Sequence in context: A060637 A123486 A350161 * A274106 A354802 A158982
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 16 2009
STATUS
approved