login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350161
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/(2*j-1))^k.
3
1, 1, 2, 1, 4, 2, 1, 8, 8, 3, 1, 16, 26, 15, 5, 1, 32, 80, 63, 25, 5, 1, 64, 242, 255, 125, 33, 5, 1, 128, 728, 1023, 625, 209, 45, 6, 1, 256, 2186, 4095, 3125, 1281, 335, 60, 7, 1, 512, 6560, 16383, 15625, 7745, 2385, 504, 73, 9, 1, 1024, 19682, 65535, 78125, 46593, 16775, 4080, 703, 95, 9
OFFSET
1,3
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^(2*j)).
T(n,k) = Sum_{j=1..n} Sum_{d|j} A101455(j/d) * (d^k - (d - 1)^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, 64, 128, ...
2, 8, 26, 80, 242, 728, 2186, ...
3, 15, 63, 255, 1023, 4095, 16383, ...
5, 25, 125, 625, 3125, 15625, 78125, ...
5, 33, 209, 1281, 7745, 46593, 279809, ...
5, 45, 335, 2385, 16775, 117585, 823415, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(j + 1) * Floor[n/(2*j - 1)]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\(2*j-1))^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, kronecker(-4, j/d)*(d^k-(d-1)^k)));
CROSSREFS
Columns k=1..3 give A014200, A350162, A350163.
T(n,n) gives A350164.
Sequence in context: A157028 A060637 A123486 * A158264 A274106 A354802
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Dec 18 2021
STATUS
approved