login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350164
a(n) = Sum_{k=1..n}(-1)^(k+1) * floor(n/(2*k-1))^n.
2
1, 4, 26, 255, 3125, 46593, 823415, 16776960, 387400807, 9999941975, 285311495511, 8916083675135, 302875039491581, 11112006557122561, 437893859877597389, 18446743921164642176, 827240261123526320144, 39346407973736968327497
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} A101455(k/d) * (d^n - (d - 1)^n).
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} (k^n - (k - 1)^n) * x^k/(1 + x^(2*k)).
a(n) ~ n^n. - Vaclav Kotesovec, Dec 18 2021
MATHEMATICA
a[n_] := Sum[(-1)^(k + 1) * Floor[n/(2*k - 1)]^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\(2*k-1))^n);
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d)*(d^n-(d-1)^n)));
CROSSREFS
Main diagonal of A350161.
Sequence in context: A213438 A362112 A056786 * A006056 A215242 A098620
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2021
STATUS
approved