login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350167
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/(2*k-1))^k.
3
1, 2, 2, 3, 5, 3, 3, 4, 1, 9, 9, 3, 5, -9, 1, 2, 4, 25, 25, 63, -13, -75, -75, -89, -26, 102, 296, 122, 124, -58, -58, -57, -741, -229, -471, 288, 290, -732, 1302, 1472, 1474, 2824, 2824, -542, -4556, -8650, -8650, -8680, -9783, -1320, 17818, 32016, 32018, 20252, 9054, 7360
OFFSET
1,2
LINKS
FORMULA
G.f.: -(1/(1 - x)) * Sum_{j>=1} Sum{k>=1} (-k)^j * x^(k*(2*j-1)) * (1 - x^(2*j-1)).
MATHEMATICA
a[n_] := Sum[(-1)^(k + 1) * Floor[n/(2*k - 1)]^k, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\(2*k-1))^k);
(PARI) my(N=66, x='x+O('x^N)); Vec(-sum(j=1, N, (1-x^(2*j-1))*sum(k=1, N, (-k)^j*x^(k*(2*j-1))))/(1-x))
CROSSREFS
Sequence in context: A241195 A039640 A053811 * A049840 A317018 A072039
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 18 2021
STATUS
approved