login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350166
Partial sums of A050469.
2
1, 3, 5, 9, 15, 19, 25, 33, 40, 52, 62, 70, 84, 96, 108, 124, 142, 156, 174, 198, 210, 230, 252, 268, 299, 327, 347, 371, 401, 425, 455, 487, 507, 543, 579, 607, 645, 681, 709, 757, 799, 823, 865, 905, 947, 991, 1037, 1069, 1112, 1174, 1210, 1266, 1320, 1360, 1420
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} A101455(k/d) * d = Sum_{k=1..n} A050469(k).
G.f.: (1/(1 - x)) * Sum_{k>=1} k * x^k/(1 + x^(2*k)).
MATHEMATICA
f[2, e_] := 2^e; f[p_, e_] := If[Mod[p, 4] == 1, (p^(e + 1) - 1)/(p - 1), (p^(e + 1) + (-1)^e)/(p + 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate @ Array[s, 50] (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d)*d));
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1+x^(2*k)))/(1-x))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2021
STATUS
approved