login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049840 Triangular array T read by rows: T(n,k) = sum of numbers c in the form c = bq + r when Euclidean algorithm acts on n, k, for 1 <= k <= n, n >= 1. 3
1, 2, 2, 3, 5, 3, 4, 4, 7, 4, 5, 7, 10, 9, 5, 6, 6, 6, 10, 11, 6, 7, 9, 10, 14, 14, 13, 7, 8, 8, 13, 8, 18, 14, 15, 8, 9, 11, 9, 13, 18, 15, 18, 17, 9, 10, 10, 13, 14, 10, 20, 20, 18, 19, 10, 11, 13, 16, 18, 16, 22, 25, 24, 22, 21, 11, 12, 12, 12, 12, 19, 12, 26, 20, 21, 22, 23, 12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Rows n=1..100 of triangle, flattened

FORMULA

T(n,0) = 0, T(n,k) = n + T(k, n mod k). - Charlie Neder, Mar 10 2019

EXAMPLE

Triangle begins with:

  1;

  2,  2;

  3,  5,  3;

  4,  4,  7,  4;

  5,  7, 10,  9,  5;

  6,  6,  6, 10, 11,  6; ...

Example: 5=1*3+2; 3=1*2+1; 2=2*1+0; so that T(5,3)=10.

MATHEMATICA

T[n_, k_]:= If[k<=0 || k>=n+1, 0, n + T[k, Mod[n, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] (* G. C. Greubel, Mar 10 2019 *)

PROG

(PARI) {T(n, k) = if(k<=0 || k>= n+1, 0, n + T(k, n % k))};

for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 10 2019

(Sage)

def T(n, k):

    if (k==0): return 0

    else: return n + T(n, mod(n, k))

[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 10 2019

CROSSREFS

Cf. A049841 (row sums), A049842 (rows max).

Sequence in context: A241195 A039640 A053811 * A317018 A072039 A204012

Adjacent sequences:  A049837 A049838 A049839 * A049841 A049842 A049843

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

EXTENSIONS

Terms a(70) onward added by G. C. Greubel, Mar 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 15:55 EDT 2020. Contains 334684 sequences. (Running on oeis4.)