login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274106
Triangle read by rows: T(n,k) = number of configurations of k non-attacking bishops on the white squares of an n X n chessboard (0 <= k < n).
3
1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
OFFSET
1,3
LINKS
Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
J. Perott, Sur le problème des fous, Bulletin de la S. M. F., tome 11 (1883), pp. 173-186.
Eric Weisstein's World of Mathematics, White Bishop Graph.
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4, 2;
1, 8, 14, 4;
1, 12, 38, 32, 4;
1, 18, 98, 184, 100, 8;
1, 24, 188, 576, 652, 208, 8;
1, 32, 356, 1704, 3532, 2816, 632, 16;
1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16;
1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32;
1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
...
MAPLE
with(combinat): with(gfun):
T := n -> add(stirling2(n+1, n+1-k)*x^k, k=0..n):
# bishops on white squares
bish := proc(n) local m, k, i, j, t1, t2; global T;
if (n mod 2) = 0 then m:=n/2;
t1:=add(binomial(m, k)*T(2*m-1-k)*x^k, k=0..m);
else
m:=(n-1)/2;
t1:=add(binomial(m, k)*T(2*m-k)*x^k, k=0..m+1);
fi;
seriestolist(series(t1, x, 2*n+1));
end:
for n from 1 to 12 do lprint(bish(n)); od:
MATHEMATICA
T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
m = n/2; t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
CoefficientList[t1 + O[x]^(2*n+1), x]];
Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
CROSSREFS
Alternate rows give A088960.
Row sums are A216078(n+1).
Cf. A274105 (black squares), A288182, A201862, A002465.
Sequence in context: A123486 A350161 A158264 * A354802 A158982 A127124
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 14 2016
STATUS
approved