The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158982 Coefficients of polynomials P(n,x):=-2+P(n-1,x)^2, where P(0,x)=x-2. 4
 1, -2, 1, -4, 2, 1, -8, 20, -16, 2, 1, -16, 104, -352, 660, -672, 336, -64, 2, 1, -32, 464, -4032, 23400, -95680, 283360, -615296, 980628, -1136960, 940576, -537472, 201552, -45696, 5440, -256, 2, 1, -64, 1952, -37760, 520144, -5430656, 44662464 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The 2^n zeros of P(n,x) are 2+2*cos[(2k-1)Pi/(2^(n+1))], k=1,2,...,2^n. P(n,x) = 2*T(2^(n+1),(1/2)x^(1/2)), where T(k,t) is the k-th Chebyshev polynomial of the first kind. LINKS Clark Kimberling, Polynomials defined by a second-order recurrence, interlacing zeros, and Gray codes, The Fibonacci Quarterly 48 (2010) 209-218. FORMULA P(n+1,x+2) = P(n,x^2) for n>=0. EXAMPLE Row 1: 1 -2 (from x-2) Row 2: 1 -4 2 (from x^2-4x+2) Row 3: 1 -8 20 -16 2 Row 4: 1 -16 104 -352 660 -672 336 -64 2 PROG (PARI) tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + p^2; print(Vec(p)); ); } \\ Michel Marcus, Mar 01 2016 CROSSREFS Cf. A084534, A158983, A158984, A158985, A158986. Sequence in context: A123486 A158264 A274106 * A127124 A127136 A239101 Adjacent sequences:  A158979 A158980 A158981 * A158983 A158984 A158985 KEYWORD sign,tabf AUTHOR Clark Kimberling, Apr 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 02:48 EDT 2021. Contains 346435 sequences. (Running on oeis4.)