login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274104
a(n) = Sum_{k=0..n} (3*k+2)*Catalan(k).
1
2, 7, 23, 78, 274, 988, 3628, 13495, 50675, 191673, 729145, 2786655, 10691111, 41150011, 158825371, 614483086, 2382366586, 9253540456, 36001307656, 140269835866, 547245301906, 2137552658206, 8358366985726, 32715599554876, 128168506456852, 502538379368656, 1971926625140816
OFFSET
0,1
LINKS
Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.
FORMULA
D-finite with recurrence: (n+1)*a(n) - (3*n+5)*a(n-1) - 2*(3*n-8)*a(n-2) + 4*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Jun 15 2016
G.f.: (1 + 2*x - sqrt(1-4*x))/(2*x*(1-x)*sqrt(1-4*x)). - Ilya Gutkovskiy, Jun 15 2016
a(n) = A014137(n+1) + (n+1)*A000108(n+1) - 1. - G. C. Greubel, Jun 30 2024
From Mélika Tebni, Sep 02 2024: (Start)
a(n) = A006134(n) + A006134(n+1)/2 - 1/2.
E.g.f.: exp(2*x)*(5*BesselI(0, 2*x)/2 + BesselI(1, 2*x)) + exp(x)/2*(3*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx - 1). (End)
MATHEMATICA
CoefficientList[Series[(1 +2 x -Sqrt[1-4 x])/(2 x Sqrt[1-4 x] (1-x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2016 *)
PROG
(Magma) [(&+[(3*k+2)*Catalan(k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jun 30 2024
(SageMath) [sum((3*k+2)*catalan_number(k) for k in range(n+1)) for n in range(41)] # G. C. Greubel, Jun 30 2024
CROSSREFS
Partial sums of A051960.
Sequence in context: A292236 A292087 A091702 * A068593 A198944 A328035
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 13 2016
STATUS
approved