login
A274108
Number of partitions of n into parts with exactly two different sizes, the sizes being relatively prime.
4
0, 0, 1, 2, 5, 5, 11, 11, 16, 17, 27, 21, 37, 33, 38, 42, 59, 46, 71, 57, 70, 75, 97, 72, 104, 99, 109, 103, 141, 102, 157, 133, 148, 153, 166, 140, 207, 183, 192, 174, 241, 180, 259, 215, 223, 247, 295, 219, 300, 260, 292, 279, 353, 275, 336, 300, 346, 351
OFFSET
1,4
LINKS
N. Benyahia Tani, S. Bouroubi, and O. Kihel, An effective approach for integer partitions using exactly two distinct sizes of parts, Bulletin du Laboratoire 03 (2015), 18-27.
FORMULA
Moebius transform of A002133. - Andrew Howroyd, Nov 10 2024
EXAMPLE
Explanation of a(3)-a(6):
n=3: 21
n=4: 31, 211
n=5: 41, 32, 311, 221, 2111
n=6: 51, 411, 3111, 2211, 21111
PROG
(PARI) seq(n)={my(v=Vec(sum(k=1, n-1, numdiv(k)*x^k, O(x^n))^2, -n), u=vector(n, n, moebius(n))); dirmul(u, vector(#v, n, v[n]+numdiv(n)-sigma(n))/2)} \\ Andrew Howroyd, Nov 10 2024
(Python)
from math import gcd
from sympy import divisors
def A274108(n): return sum(1 for ax in range(1, n-1) for a in divisors(ax, generator=True) for b in divisors(n-ax, generator=True) if a<b and gcd(a, b)==1) # Chai Wah Wu, Dec 11 2024
CROSSREFS
Row sums of triangle in A274109.
Sequence in context: A194119 A084721 A273041 * A368616 A138316 A377043
KEYWORD
nonn,look
AUTHOR
N. J. A. Sloane, Jun 17 2016
EXTENSIONS
More terms from Alois P. Heinz, Jun 23 2016
STATUS
approved