login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A274110
Number of equivalence classes of ballot paths of length n for the string uu.
8
1, 2, 3, 5, 8, 14, 24, 42, 73, 128, 224, 393, 689, 1209, 2121, 3722, 6531, 11461, 20112, 35294, 61936, 108690, 190737, 334720, 587392, 1030801, 1808929, 3174449, 5570769, 9776018, 17155715, 30106181, 52832664, 92714862, 162703240, 285524282, 501060185, 879299328, 1543062752, 2707886361
OFFSET
1,2
LINKS
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
FORMULA
G.f.: x*(1-x^2-x^4) / ( (x-1)*(1+x)*(x^3-x^2+2*x-1) ). - R. J. Mathar, Jun 20 2016
a(n) = 2*a(n-1) - a(n-3) + a(n-4) - a(n-5). - Wesley Ivan Hurt, Mar 15 2023
MATHEMATICA
CoefficientList[Series[(1 - x^2 - x^4) / ((x - 1) (1 + x) (x^3 - x^2 + 2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
PROG
(PARI) apply( {A274110(n)=(matcompanion(x^5-2*x^4+x^2-x+1)^n)[5, 3]+1}, [1..44]) \\ M. F. Hasler, Jun 22 2021
CROSSREFS
Sequence in context: A340215 A114831 A343161 * A347018 A374747 A260403
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 17 2016
STATUS
approved