OFFSET
1,4
COMMENTS
The trees counted by a(n) are called NIM trees on n vertices (No Intermediate Multiplicities). Equivalently, a(n) counts the trees on n vertices such that every vertex v of degree >= 3 satisfies two conditions:
(i) at most two branches at v have more than one vertex, and
(ii) at v has at least three adjacent vertices with degrees <= 3.
This is from the monograph "Eigenvalues, multiplicities and graphs" (see references).
Notice that they are restricted caterpillars: NIM trees are caterpillars on n vertices such that the following two conditions hold:
(i) Any degree sequence (...,a,b,c,...) for a>=4, b=4, c>=4 cannot be found in the degree sequence of the central path.
(ii) Any degree sequence (...,a,b,...) for a=3, b>=3, cannot be found in the degree sequence of the central path.
REFERENCES
Charles R. Johnson and Carlos M. Saiago, Eigenvalues, multiplicities and graphs, Cambridge University Press, 2018.
LINKS
Charles R. Johnson, George Tsoukalas, Greyson C. Wesley, and Zachary Zhao, k-NIM trees: Characterization and Enumeration, arXiv:2208.05450 [math.CO], 2022.
FORMULA
Conjecture: For n>15, a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + 2*a(n-4) - a(n-5) - 2*a(n-6) + a(n-7) + 3*a(n-8) - 4*a(n-9) - a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) + a(n-14) - a(n-15), with initial terms a(1) through a(15) as given.
If the above conjecture holds, then a(n) has o.g.f. (x - x^2 - 2*x^3 + 2*x^4 - x^5 - x^6 + 2*x^7 - 3*x^9 + 2*x^10 + x^11 - x^12 + 2*x^13 - x^15)/(1 - 2*x - x^2 + 3*x^3 - 2*x^4 + x^5 + 2*x^6 - x^7 - 3*x^8 + 4*x^9 + x^10 - 2*x^11 + 2*x^12 - 2*x^13 - x^14 + x^15).
If the above conjecture holds, then a(n) has an explicit Binet-like formula that can be obtained in terms of the roots of a fifth-degree polynomial.
EXAMPLE
By degree sequence of the central path:
a(1): (0)
a(2): (1,1)
a(3): (1,2,1)
a(4): (1,2,2,1),(1,3,1)
a(5): (1,2,2,2,1),(1,2,3,1),(1,4,1)
a(6): (1,2,2,2,2,1),(1,2,3,2,1),(1,2,2,3,1),(1,2,4,1),(1,5,1)
a(7): (1,2,2,2,2,2,1),(1,2,4,2,1),(1,2,2,4,1),(1,2,2,3,2,1),(1,2,2,2,3,1),
(1,2,5,1),(1,3,2,3,1),(1,6,1)
a(8): (1,2,2,2,2,2,2,1),(1,3,2,2,2,2,1),(1,2,3,2,2,2,1),(1,2,2,3,2,2,1),
(1,4,2,2,2,1),(1,2,4,2,2,1),(1,5,2,2,1),(1,2,5,2,1),
(1,6,2,1),(1,3,2,3,2,1),(1,3,2,2,3,1),(1,7,1),
(1,4,2,3,1), (1,4,4,1)
MATHEMATICA
A[z_, u_, r_]:=r z^4 (1+u z+(u^2 z^4)/(1-u z^4));
Nsk[z_, u_, r_]:=r z(1/2 (1/(1-1/z A[z, u, r])+(1+1/z A[z, u, r])/(1-1/z^2 A[z^2, u^2, r^2]))-1)
alpha[z_, u_, r_]:=r A[z, u, r]+(2Nsk[z^2, u^2, r^2])/(z r) (1+A[z, u, r]/z);
beta[z_, u_, r_]:=-1/(r z) (1+A[z, u, r]/z);
Nsksym[z_, u_, r_]:=Sum[Product[beta[z^2^i, u^2^i, r^2^i], {i, 0, k-1}] alpha[z^2^k, u^2^k, r^2^k], {k, 0, 6}];
Nskasym[z_, u_, r_]:=Nsk[z, u, r]-Nsksym[z, u, r];
Nsksymodu[z_, u_, r_]:=(Nsksym[z, u, r]-Nsksym[z, -u, r])/2;
Nsksymodr[z_, u_, r_]:=(Nsksym[z, u, r]-Nsksym[z, u, -r])/2;
Nsksymevuevr[z_, u_, r_]:=(Nsksym[z, u, r]+Nsksym[z, -u, r]+Nsksym[z, u, -r]+Nsksym[z, -u, -r])/4;
Nsym[z_]:=Nsksymevuevr[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]]+(Sqrt[1-z^2]/(1-z))(Nsksymodr[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]])+(Sqrt[1-z^2]/(1-z))(Nsksymodu[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]]);
Nim[z_]:=(z/(1-z)+Nsym[z])+(Nskasym[z, 1/(1-z), 1/(1-z)]+1/2(Nsksymevuevr[z, 1/(1-z), 1/(1-z)]-Nsksymevuevr[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]])+1/2 (Nsksymodr[z, 1/(1-z), 1/(1-z)]-Sqrt[1-z^2]/(1-z) Nsksymodr[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]])+1/2 (Nsksymodu[z, 1/(1-z), 1/(1-z)]-Sqrt[1-z^2]/(1-z) Nsksymodu[z, 1/Sqrt[1-z^2], 1/Sqrt[1-z^2]]));
TableForm[Table[{i, Coefficient[Series[Nim[z]/.{u -> 1, r -> 1}, {z, 0, 50}], z^i]}, {i, 1, 50}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Greyson C. Wesley, Aug 10 2021
STATUS
approved