The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347015 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(1/3). 6
 1, 1, 5, 42, 498, 7644, 144156, 3225648, 83536008, 2457701928, 80970232104, 2953056534768, 118112744060208, 5140622709134496, 241863782829704928, 12232551538417012992, 661818290353375962240, 38140594162828447248000, 2332567001993176540206720, 150880256846462633823648000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..372 FORMULA a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A007559(k). a(n) ~ n! * exp(n/3) / (Gamma(1/3) * 3^(1/3) * n^(2/3) * (exp(1/3) - 1)^(n + 1/3)). - Vaclav Kotesovec, Aug 14 2021 a(0) = 1; a(n) = Sum_{k=1..n} (3 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023 MAPLE g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end: a:= n-> add(abs(Stirling1(n, k))*g(k), k=0..n): seq(a(n), n=0..19); # Alois P. Heinz, Aug 10 2021 MATHEMATICA nmax = 19; CoefficientList[Series[1/(1 + 3 Log[1 - x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Abs[StirlingS1[n, k]] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}] CROSSREFS Cf. A007559, A007840, A346978, A346982, A347016. Cf. A354263. Sequence in context: A317352 A352069 A355786 * A102693 A052654 A108398 Adjacent sequences: A347012 A347013 A347014 * A347016 A347017 A347018 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 10 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 14:52 EDT 2024. Contains 371665 sequences. (Running on oeis4.)