login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347013
E.g.f.: exp(x) / (1 - 5 * x)^(1/5).
3
1, 2, 9, 88, 1361, 28182, 726889, 22414988, 803913441, 32867765002, 1508608850249, 76804271962848, 4294870015118641, 261673684619584862, 17252970318529474089, 1223896705010751194068, 92946073511938131386561, 7523666291578066678172562, 646658551118777059833155209
OFFSET
0,2
COMMENTS
Binomial transform of A008548.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A008548(k).
a(n) ~ n! * exp(1/5) * 5^n / (Gamma(1/5) * n^(4/5)). - Vaclav Kotesovec, Aug 14 2021
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, (5*n-4)*g(n-1)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 10 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[Exp[x]/(1 - 5 x)^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
Table[HypergeometricU[1/5, n + 6/5, 1/5]/5^(1/5), {n, 0, 18}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 10 2021
STATUS
approved