login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008548
Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
59
1, 1, 6, 66, 1056, 22176, 576576, 17873856, 643458816, 26381811456, 1213563326976, 61891729675776, 3465936861843456, 211422148572450816, 13953861805781753856, 990724188210504523776, 75295038303998343806976, 6098898102623865848365056, 524505236825652462959394816
OFFSET
0,3
COMMENTS
a(n), n>=1, enumerates increasing sextic (6-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007
Hankel transform is A169620. - Paul Barry, Dec 03 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300 (first 50 terms from T. D. Noe)
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), Article 10.6.7, Table 6.3.
FORMULA
a(n) = A049385(n, 1) (first column of triangle).
E.g.f.: (1-5*x)^(-1/5).
a(n) ~ 2^(1/2)*Pi^(1/2)*gamma(1/5)^-1*n^(-3/10)*5^n*e^-n*n^n*{1 + 1/300*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-5)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1-x/(1-5x/(1-6x/(1-10x/(1-11x/(1-15x/(1-16x/(1-20x/(1-21x/(1-25x/(1-.../(1-A008851(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n)=(-4)^n*Sum_{k=0..n} (5/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(5*k+1)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+1)*x/((5*k+1)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = (10n-18)*a(n-2) + (5n-6)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 12 2013
Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( int {0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/5], [], 5*x). - Peter Luschny, Oct 08 2015
a(n) = 5^n * Gamma(n + 1/5) / Gamma(1/5). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-5*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^4)^(1/5)*(Gamma(1/5) - Gamma(1/5, 1/5)). - Amiram Eldar, Dec 19 2022
MAPLE
a := n -> mul(5*k+1, k=0..n-1);
G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..16); # Zerinvary Lajos, Apr 03 2009
H := hypergeom([1, 1/5], [], 5*x):
seq(coeff(series(H, x, 20), x, n), n=0..16); # Peter Luschny, Oct 08 2015
MATHEMATICA
Table[Product[5k+1, {k, 0, n-1}], {n, 0, 20}] (* Harvey P. Dale, Apr 23 2011 *)
FoldList[Times, 1, NestList[#+5&, 1, 20]] (* Ray Chandler, Apr 23 2011 *)
FoldList[Times, 1, 5Range[0, 25] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
PROG
(PARI) x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ Joerg Arndt, Apr 24 2011
(PARI) vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ Altug Alkan, Oct 08 2015
(Magma) [(&*[5*k+1: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 16 2019
(Sage) [product(5*k+1 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 16 2019
(GAP) List([0..20], n-> Product([0..n], k-> 5*k+1)); # G. C. Greubel, Aug 16 2019
KEYWORD
nonn,nice,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved