Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #101 Oct 30 2023 07:16:01
%S 1,1,6,66,1056,22176,576576,17873856,643458816,26381811456,
%T 1213563326976,61891729675776,3465936861843456,211422148572450816,
%U 13953861805781753856,990724188210504523776,75295038303998343806976,6098898102623865848365056,524505236825652462959394816
%N Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
%C a(n), n>=1, enumerates increasing sextic (6-ary) trees with n vertices. - _Wolfdieter Lang_, Sep 14 2007
%C Hankel transform is A169620. - _Paul Barry_, Dec 03 2009
%H Vincenzo Librandi, <a href="/A008548/b008548.txt">Table of n, a(n) for n = 0..300</a> (first 50 terms from T. D. Noe)
%H Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, <a href="http://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
%H Maxie D. Schmidt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html">Generalized j-Factorial Functions, Polynomials, and Applications </a>, J. Int. Seq. 13 (2010), Article 10.6.7, Table 6.3.
%F a(n) = A049385(n, 1) (first column of triangle).
%F E.g.f.: (1-5*x)^(-1/5).
%F a(n) ~ 2^(1/2)*Pi^(1/2)*gamma(1/5)^-1*n^(-3/10)*5^n*e^-n*n^n*{1 + 1/300*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
%F a(n) = Sum_{k=0..n} (-5)^(n-k)*A048994(n, k). - _Philippe Deléham_, Oct 29 2005
%F G.f.: 1/(1-x/(1-5x/(1-6x/(1-10x/(1-11x/(1-15x/(1-16x/(1-20x/(1-21x/(1-25x/(1-.../(1-A008851(n+1)*x/(1-... (continued fraction). - _Paul Barry_, Dec 03 2009
%F a(n)=(-4)^n*Sum_{k=0..n} (5/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012
%F G.f.: 1/Q(0) where Q(k) = 1 - x*(5*k+1)/(1 - x*(5*k+5)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 20 2013
%F G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+1)*x/((5*k+1)*x + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 14 2013
%F a(n) = (10n-18)*a(n-2) + (5n-6)*a(n-1), n>=2. - _Ivan N. Ianakiev_, Aug 12 2013
%F Let T(x) = 1/(1 - 4*x)^(1/4) be the e.g.f. for the sequence of triple factorial numbers A007696. Then the e.g.f. A(x) for the quintuple factorial numbers satisfies T( int {0..x} A(t) dt ) = A(x). Cf. A007559 and A007696. - _Peter Bala_, Jan 02 2015
%F O.g.f.: hypergeom([1, 1/5], [], 5*x). - _Peter Luschny_, Oct 08 2015
%F a(n) = 5^n * Gamma(n + 1/5) / Gamma(1/5). - _Artur Jasinski_, Aug 23 2016
%F D-finite with recurrence: a(n) +(-5*n+4)*a(n-1)=0. - _R. J. Mathar_, Jan 17 2020
%F Sum_{n>=0} 1/a(n) = 1 + (e/5^4)^(1/5)*(Gamma(1/5) - Gamma(1/5, 1/5)). - _Amiram Eldar_, Dec 19 2022
%p a := n -> mul(5*k+1, k=0..n-1);
%p G(x):=(1-5*x)^(-1/5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # _Zerinvary Lajos_, Apr 03 2009
%p H := hypergeom([1, 1/5], [], 5*x):
%p seq(coeff(series(H,x,20),x,n),n=0..16); # _Peter Luschny_, Oct 08 2015
%t Table[Product[5k+1,{k,0,n-1}],{n,0,20}] (* _Harvey P. Dale_, Apr 23 2011 *)
%t FoldList[Times,1,NestList[#+5&,1,20]] (* _Ray Chandler_, Apr 23 2011 *)
%t FoldList[Times,1,5Range[0, 25] + 1] (* _Vincenzo Librandi_, Jun 10 2013 *)
%o (PARI) x='x+O('x^33); Vec(serlaplace((1-5*x)^(-1/5))) \\ _Joerg Arndt_, Apr 24 2011
%o (PARI) vector(20, n, n--; prod(k=0, n-1, 5*k+1)) \\ _Altug Alkan_, Oct 08 2015
%o (Magma) [(&*[5*k+1: k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Aug 16 2019
%o (Sage) [product(5*k+1 for k in (0..n)) for n in (0..20)] # _G. C. Greubel_, Aug 16 2019
%o (GAP) List([0..20], n-> Product([0..n], k-> 5*k+1)); # _G. C. Greubel_, Aug 16 2019
%Y Cf. A001147, A007559, A007696, A016861, A034687, A034688, A052562, A047055, A049385, A051150.
%K nonn,nice,easy
%O 0,3
%A Joe Keane (jgk(AT)jgk.org)