login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052562
a(n) = 5^n * n!.
25
1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, 116943750000000000, 7601343750000000000, 532094062500000000000, 39907054687500000000000
OFFSET
0,2
COMMENTS
A simple regular expression in a labeled universe.
For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_5)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
LINKS
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
a(n) = A051150(n+1, 0) (first column of triangle).
E.g.f.: 1/(1-5*x).
a(n) = 5*n*a(n-1) with a(0)=1.
G.f.: 1/(1-5*x/(1-5*x/(1-10*x/(1-10*x/(1-15*x/(1-15*x/(1-20*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 1/Q(0), where Q(k) = 1 - 5*x*(2*k+1) - 25*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = n!*A000351(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/5) (A092514).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/5) (A092618). (End)
MAPLE
spec := [S, {S=Sequence(Union(Z, Z, Z, Z, Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
with(combstruct):A:=[N, {N=Cycle(Union(Z$5))}, labeled]: seq(count(A, size=n)/5, n=1..16); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
Table[5^n*n!, {n, 0, 20}] (* Wesley Ivan Hurt, Sep 28 2013 *)
PROG
(Magma)[5^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
(PARI) {a(n) = 5^n*n!}; \\ G. C. Greubel, May 05 2019
(Sage) [5^n*factorial(n) for n in (0..20)] # G. C. Greubel, May 05 2019
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
Name changed by Arkadiusz Wesolowski, Oct 04 2011
STATUS
approved