login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047056
Quintuple factorial numbers: Product_{k=0..n-1} (5*k+3).
15
1, 3, 24, 312, 5616, 129168, 3616704, 119351232, 4535346816, 195019913088, 9360955828224, 496130658895872, 28775578215960576, 1812861427605516288, 123274577077175107584, 8999044126633782853632, 701925441877435062583296, 58259811675827110194413568
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1-5*x)^(-3/5).
a(n) ~ sqrt(2*Pi)/Gamma(3/5)*n^(1/10)*(5*n/e)^n*(1 - 11/300*n^ - 1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1-3*x/(1-5*x/(1-8*x/(1-10*x/(1-13*x/(1-15*x/(1-18*x/(1-20*x/(1- ... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} (5/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+3)/( 1 - 5*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - (5*k+3)*x/((5*k+3)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
D-finite with recurrence: a(n) +(-5*n+2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/5^2)^(1/5)*(Gamma(3/5) - Gamma(3/5, 1/5)). - Amiram Eldar, Dec 19 2022
MAPLE
seq(mul(5*k+3, k = 0..n-1), n = 0..20); # G. C. Greubel, Aug 20 2019
MATHEMATICA
Table[5^n*Pochhammer[3/5, n], {n, 0, 20}] (* G. C. Greubel, Aug 20 2019 *)
Join[{1}, FoldList[Times, 5*Range[0, 20]+3]] (* Harvey P. Dale, Oct 08 2020 *)
PROG
(PARI) vector(20, n, n--; prod(j=0, n-1, 5*j+3) ) \\ G. C. Greubel, Aug 20 2019
(Magma) [1] cat [(&*[5*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 20 2019
(Sage) [5^n*rising_factorial(3/5, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 5*k+3 )); # G. C. Greubel, Aug 20 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved