|
|
A047058
|
|
a(n) = 6^n * n!.
|
|
22
|
|
|
1, 6, 72, 1296, 31104, 933120, 33592320, 1410877440, 67722117120, 3656994324480, 219419659468800, 14481697524940800, 1042682221795737600, 81329213300067532800, 6831653917205672755200, 614848852548510547968000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_6)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
a(n) is the number of ways 3 members of each of n different teams can be arranged in a row so that members of the same team are together. - Geoffrey Critzer, Mar 30 2009
Number of n X n monomial matrices with entries 0, +/-1, +/-w, +/-w^2, where w = (-1 + sqrt(3)*i)/2 is a primitive 3rd root of unity.
a(n) is the order of the group U_n(Z[w]) = {A in M_n(Z[w]): A*A^H = I_n}, the group of n X n unitary matrices over the Eisenstein integers. Here A^H is the conjugate transpose of A. (End)
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: 1/(1 - 6*x).
G.f.: 1/(1 -6*x/(1 - 6*x/(1 - 12*x/(1 - 12*x/(1 - 18*x/(1 - 18*x/(1 - 24*x/(1 - 24*x/(1 - 30*x/(1 - 30*x/(1 -... (continued fraction). - Philippe Deléham, Jan 08 2012
Sum_{n>=0) 1/a(n) = e^(1/6) (A092515).
Sum_{n>=0) (-1)^n/a(n) = e^(-1/6) (A092727). (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Joe Keane (jgk(AT)jgk.org)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|