login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A362722 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ). 11
1, 6, 72, 1266, 23232, 445506, 8740728, 174366114, 3519799296, 71696570010, 1470795168072, 30344633110710, 628994746308288, 13089254107521234, 273292588355096760, 5722454505166750266, 120119862431845048320, 2526922404360157374738, 53260275108329790626952 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
It is known that the sequence of Apéry numbers A005258 satisfies the Gauss congruences A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k
>= 1} A005258(k)*x^k/k ) = 1 + 3*x + 14*x^2 + 82*x^3 + 551*x^4 + ... has integer coefficients (see, for example, Beukers, Proposition, p. 143). Therefore, the power series expansion of E(x)/E(-x) also has integer coefficients and so a(n) = [x^n] ( E(x)/E(-x) )^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.
LINKS
F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005258(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p^r) == a(p^(r-1)) (mod p^(2*r+1)) holds for all primes p >= 5.
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 3.
3) for r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and n >= 1.
MAPLE
A005258 := proc(n) add(binomial(n, k)^2*binomial(n+k, k), k = 0..n) end proc:
E(n, x) := series(exp(n*add(2*A005258(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
seq(coeftayl(E(n, x), x = 0, n), n = 0..20);
CROSSREFS
Sequence in context: A272688 A063965 A347023 * A214875 A047058 A202382
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 01 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 09:42 EDT 2024. Contains 371935 sequences. (Running on oeis4.)