login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214875
Number of 4 X n nonconsecutive tableaux.
3
1, 1, 6, 72, 1289, 29889, 831174, 26455564, 934766625, 35896627737, 1475461220832, 64175536953702, 2928055871469177, 139180794974903769, 6854741942660442918, 348244986517582367748, 18183302860592129336633, 972820066413029570529513, 53192593416458179801289034
OFFSET
0,3
COMMENTS
A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau.
LINKS
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
Wikipedia, Young tableau
FORMULA
a(n) ~ 3^(4*n+12) / (2^13 * Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 1, 6][n+1], ((1620*n^7
-13770*n^6 +41958*n^5 -48762*n^4 -6642*n^3 +62532*n^2 -48600*n
+11664)*a(n-3) +(-3260*n^7 +11360*n^6 -4169*n^5 -19015*n^4
+14521*n^3 +6179*n^2 -7380*n +1764)*a(n-2) +(-80*n +1964*n^3
-7469*n^4 +3631*n^2 -5236*n^5 +2590*n^6 +1660*n^7 -300)*a(n-1))
/((2*n+3)*(n+3)*(10*n^2-15*n-1)*(n+2)^3))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[0] = a[1] = 1; a[2] = 6; a[n_] := a[n] = ((1620n^7 - 13770n^6 + 41958n^5 - 48762n^4 - 6642n^3 + 62532n^2 - 48600n + 11664) a[n-3] + (-3260n^7 + 11360n^6 - 4169n^5 - 19015n^4 + 14521n^3 + 6179n^2 - 7380n + 1764) a[n-2] + (-80n + 1964n^3 - 7469n^4 + 3631n^2 - 5236n^5 + 2590n^6 + 1660n^7 - 300) a[n-1])/((2n + 3)(n + 3)(10n^2 - 15n - 1)(n + 2)^3);
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
CROSSREFS
Row n=4 of A214021.
Sequence in context: A063965 A347023 A362722 * A047058 A202382 A266869
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 28 2012
STATUS
approved