login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347023
E.g.f.: 1 / (1 - 6 * log(1 + x))^(1/6).
3
1, 1, 6, 72, 1254, 28794, 819888, 27869316, 1101032100, 49570797780, 2505156062472, 140417898936336, 8644973807845368, 579908437058338920, 42098286646367326368, 3288252917244250703664, 274974019392668843164176, 24510436934573885695407504, 2319947117871178825560902112
OFFSET
0,3
COMMENTS
In general, for k > 1, if e.g.f. = 1 / (1 - k*log(1 + x))^(1/k), then a(n) ~ n! * exp(1/k^2) / (Gamma(1/k) * k^(1/k) * n^(1 - 1/k) * (exp(1/k) - 1)^(n + 1/k)). - Vaclav Kotesovec, Aug 14 2021
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * A008542(k).
a(n) ~ n! * exp(1/36) / (Gamma(1/6) * 6^(1/6) * n^(5/6) * (exp(1/6) - 1)^(n + 1/6)). - Vaclav Kotesovec, Aug 14 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(1 - 6 Log[1 + x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 11 2021
STATUS
approved