login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347026
Irregular triangle read by rows in which row n lists the first n odd numbers, followed by the first n odd numbers in decreasing order.
1
1, 1, 1, 3, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 15, 13, 11, 9, 7, 5, 3, 1
OFFSET
1,4
COMMENTS
The terms of this sequence are the numbers in an irregular triangle corresponding to the addition of rows when multiplying two large numbers via a novel method (see Links).
Sums of the rising diagonals yield sequence A007980.
When the 2n terms in row n are used as the coefficients of a (2n-1)st-order polynomial in x, dividing that polynomial by x+1 produces a (2n-2)nd-order polynomial whose coefficients are the n-th row of A004737 (if that sequence is taken as an irregular triangle with 2n-1 terms in its n-th row). E.g., for n=3, (x^5 + 3x^4 + 5x^3 + 5x^2 + 3x + 1)/(x+1) = x^4 + 2x^3 + 3x^2 + 2x + 1.
FORMULA
T(n,k) = 2k - 1 for 1 <= k <= n,
4n - 2k + 1 for n+1 <= k <= 2n.
EXAMPLE
Triangle begins:
1, 1;
1, 3, 3, 1;
1, 3, 5, 5, 3, 1;
1, 3, 5, 7, 7, 5, 3, 1;
1, 3, 5, 7, 9, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1;
1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1;
...
MATHEMATICA
Array[Join[#, Reverse[#]] &@Range[1, 2 # - 1, 2] &, 9] // Flatten (* Michael De Vlieger, Aug 18 2021 *)
Flatten[Table[Join[Range[1, 2n+1, 2], Range[2n+1, 1, -2]], {n, 0, 10}]] (* Harvey P. Dale, Aug 31 2024 *)
PROG
(C)
#include <stdio.h>
int main()
{
int n, k;
for (n=1; n<=13; n++)
{
for (k=1; k<=n; k++)
{
printf("%d ", 2*k - 1);
}
for (k=n+1; k<=2*n; k++)
{
printf("%d ", 4*n - 2*k + 1);
}
printf("\n");
}
return 0;
}
(PARI) row(n) = n*=2; vector(n, k, min(2*k-1, 2*(n-k)+1)); \\ Michel Marcus, Aug 17 2021
CROSSREFS
Even-indexed rows of A157454.
Antidiagonal sums give A007980.
Row lengths give nonzero terms of A005843.
Cf. A004737.
Sequence in context: A266539 A090569 A160324 * A197928 A109439 A247646
KEYWORD
nonn,tabf
AUTHOR
Eddie Gutierrez, Aug 11 2021
EXTENSIONS
Better definition from Omar E. Pol, Aug 14 2021
STATUS
approved