OFFSET
0,2
COMMENTS
Alternative formula for e^(n*Pi/2) is i^(-n*i), where i = sqrt(-1). Substitute 2i for n in each identity, resulting in e^(Pi*i) = -1; Euler's formula.
A121905 is the bisection of the sequence, ceiling(e^(n*Pi)).
FORMULA
a(n) = ceiling(e^(n*Pi/2)) = ceiling(i^(-n*i)).
EXAMPLE
a(5) = ceiling(e^(5*Pi/2)) = ceiling(i^(-5*i)) = 2576.
MATHEMATICA
a[n_]:=Ceiling[Exp[n Pi/2]]; Table[a[n], {n, 0, 24}] (* Stefano Spezia, Aug 12 2021 *)
PROG
(PARI) a(n) = ceil(exp(n*Pi/2)); \\ Michel Marcus, Aug 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Aug 11 2021
STATUS
approved