login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218987
Power ceiling sequence of 2+sqrt(7).
3
5, 24, 112, 521, 2421, 11248, 52256, 242769, 1127845, 5239688, 24342288, 113088217, 525379733, 2440783584, 11339273536, 52679444897, 244735600197, 1136980735480, 5282129742512, 24539461176489, 114004233933493, 529635319263440, 2460553978854240
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(7), and the limit p4(r) = 5.19758760498048832156707270895307875397561324042...
See A218986 for the power floor function, p1(x); for comparison of p1 and p4, limit(p4(r)/p1(r) = 4 - sqrt(7).
FORMULA
a(n) = ceiling(x*a(n-1)), where x=2+sqrt(7), a(0) = ceiling(x).
a(n) = 5*a(n-1) - a(n-2) - 3*a(n-3).
G.f.: (5 - x - 3*x^2)/(1 - 5*x + x^2 + 3*x^3).
a(n) = (-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84. - Colin Barker, Sep 02 2016
EXAMPLE
a(0) = ceiling(r) = 5, where r = 2+sqrt(7);
a(1) = ceiling(5*r) = 24; a(2) = ceiling(24*r) = 112.
MATHEMATICA
(See A218986.)
PROG
(PARI) a(n) = round((-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84) \\ Colin Barker, Sep 02 2016
(PARI) Vec((5-x-3*x^2)/((1-x)*(1-4*x-3*x^2)) + O(x^30)) \\ Colin Barker, Sep 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 11 2012
STATUS
approved